Practical Numerical Simulation of Laser Welding for Industrial Use

B.L. Bemis
Introduction

• Laser Welding of Metals
 – Advantages
 • Fast
 • Precise power input
 • Low distortion
 • Small fusion zone
 • Very high energy density
 – Main Modes
 • Conduction (low power)
 • Keyhole (> 1.0 e^6 W/cm^2)
 – Trumpf Trudisk
 • 1030 nm
 • 1000 W
 • 50 micron fiber
 • CW or Pulsed modes
 • 1.5-5.0 e^7 W/cm^2

Problem Considerations & Motivation

- Thin sections 0.003” – 0.15” (0.1 – 4 mm)
- Small parts with high precision
- Very high melting point alloys >3000 F (1650 C)
- Very high molten metal viscosity and surface tension
- Complex geometry, edges, circular sections, etc
- Deep penetration is necessary, requiring keyhole mode
- Some alloys are HAZ sensitive
- Very expensive alloys and high value added parts
- Very expensive experimentation to define weld parameters
- High Fidelity Simulations of the complete keyhole physics very complex, expensive, and slow.
Problem Considerations

- Problem considerations:
 - The simulation needs to predict the quantities of interest well enough to specify laser processing parameters.
 - Quantities of interest:
 - Weld pool diameter/ general fusion zone shape
 - Penetration depth
 - Process Parameters:
 - Start dwell and dwell power
 - Start ramp time/length and power
 - “Steady State” weld power
 - End ramp time/length and power
 - Traverse speed at all times
 - For development of industrial processes we need an economical solution: Fast, Robust, and Easy to use.
Problem Considerations

- Problem considerations:
 - Geometry
 - Tube and plate
 - Blind lap weld
 - Corner lap weld
 - Butt weld
 - Meshes
 - Keyhole
 - Overset
Problem Considerations

• Problem set-up:
 – Weld sections modeled as a single volume
 – Solid conduction only, high viscosity and high surface tension
 – Weld pool characterized as an iso-surface at melt temperature
 – Keyhole as a volumetric source
 • Diameter, shape, power distribution, and depth determined a-priori from literature references and experimental results.
 • Commonly simulated as a cylinder of 2x the radius of the beam at the focal point
 – Overset mesh used for the moving heat source
 – Mesh refinement in the weld zone path
 – Implicit unsteady solver
 – Weld speed, laser power, time step controlled by field functions.
Problem considerations: Keyhole Physics

- Energy transfer
 - Fresnel reflection
 - Inverse Bremstrahlung
- Pressure balance between vaporized metal and surface tension maintains the keyhole
- Energy transfer modeled as a cylindrical volumetric heat source with a non-uniform vertical distribution
- Cylinder 2x diameter of beam at focal point
- Cylinder length to focal depth
- Transfer efficiency modeled as a percent of total power
- Beam power uniform or as a function of depth

Gaussian Beam Energy Distribution

Volpp, J., and F. Volltersten. 2013

Problem Considerations

• Solution
 – Variable time step.
 • Small during initial heat-up and start ramp.
 • Larger during steady state movement
 • Smaller at turns and at the end ramp
 • Time step controlled to be less than ½ a cell size per move
 – Energy controlled inner iterations
 • Stop inner iterations with Energy monitor set at 1e-8
 – Under relaxation factor for energy set at 1
 – Ensure that the maximum temperature is set high enough to prevent clipping. $T > 20000$ K are expected.

• Good practice to do a time step study
 – Halve the time step and check solution several time to ensure the solution is temporally resolved
Typical Weld Cycle

- **Start Ramp**
- **Steady State**
- **End Ramp**
- **Start Dwell**

Graph Details:
- **Distance (in)**
- **Speed (in/min)**
- **Power (W)**
- **Time (s)**

- Distance:
 - 0 to 1.2
- Speed:
 - 0 to 1.2
- Power:
 - 0 to 1.2
- Time:
 - 0 to 0.025
Solutions

- Results - Simple butt weld
- Power levels and weld speed

Physical size 1”x1”x0.040” 123,000 poly cells, 0.25 s total welding time
Solve time: 1200 s (12 cores, Intel Xeon E5-2697 @ 2.70 GHz V9.06.011)

Too slow or too much power resulting in melt through

Optimal settings produce fastest weld with smallest HAZ and similar size molten zone
Solutions

Optimization of a circular weld of a tube into a plate

- **Power levels and ramps**
- **End overlap**

Case 1
- Initial setup
- Constant power

Case 2
- Optimized setup
- Ramped power

Optimized start dwell and ramp produces a full depth weld at the start. Decreasing power ramp through the circular weld maintains weld size and depth as heat builds up.
Solutions

• Results
 – Optimization of a circular weld of a tube into a plate
 • Power levels and ramps
 • End overlap

Case 2
• Optimized setup
• Ramped power

Final Pool
• Pool shown at start of end ramp
• Fully past initial pool at full penetration

Initial Pool
• Initial weld pool at the end of dwell
• At full penetration depth

End ramp and weld overlap ensures a full depth weld and complete welding at the start-end overlap. Especially important if the start dwell is too short.
Solutions

• Results
 – Optimization of a weld around a corner
 • Power levels and ramps

Case 1
 • Initial setup
 • Constant power

Weld pool melts through the corner at constant power and speed.

Case 2
 • Optimized setup
 • Ramped power

Optimized settings allow for a uniform melt pool throughout the weld cycle.

Additional cut plane to show the weld interior shape
Validation

- **Validation**
 - **Metallographic analysis**
 - Mount and etch cross sections of the weld zone using grain structure to compare and calibrate simulations
 - **Weld surface measurements**
 - Weld zone width measurements on the surface of the weldment
 - Easiest and quickest feedback from experiments
 - Accurate enough to guide the model
 - **Visual penetration**
 - Visual indication of full penetration of the back side of the weldment
 - **Imbedded thermocouples in the weldment**
 - Insert fine wire TC’s into drilled holes in the material near the weld zone to measure the thermal transient experienced by the workpiece.
 - TC’s in the welding fixture also can measure heat buildup in the fixtures.

Wang, R et al. Optics and Laser Technology 43 pp 870-873

Weld zone shape in stainless steel

0.0453 in
Closing Comments

• Applicability-Review of tested conditions
 – High melting point metals
 • Methodology not tested with lower melting point metals such as ferrous alloys, aluminum alloys etc
 • Validation must be conducted for each specific alloy
 – Thin sections
 • Methodology was tested with “thin sections” where the focal point and the molten zone nearly or fully extends to the back surface of the weld
 – Laser Power and Keyhole
 • Sub-kW laser power
 • 50-micron focal spot
 • Uniform and non-uniform keyhole vertical power distributions
 – Speeds
 • Less than 200 in/min (0.085 m/s)
 – Not meant to replace detailed VOF models of keyhole welding

• Utility
 – The method does a good job of predicting molten weld pool surface diameter and general shape with minimal computational effort.
 – Simulation allows prescription of welding parameters for experimental validation.
 • Steady state weld speed and power
 • Start and end ramp speed and power
 • Start dwell time and power
 • Steady state ramping of power and speeds at corners, during circular paths, etc
 • Overlap of closed weld paths
 • Heating of weldment and fixture for multiple welds
References

Bibliography

• StarCCM+ Help V9.06.011