Where the Heat goes?
Thermal Analysis of Internal Combustion Engines

Global Star User Conference

Marcus Ende, Carolus Gruenig, Carsten Skrobanek, Christian Schramm, René Paessler
Vienna, March 17-19, 2014
Thermal Analysis of IC Engines

Overview

Introduction

CAE Procedure

Gas-side heat transfer

Coolant-side heat transfer

Validation

Summary
Thermal Analysis of IC Engines

Introduction

• **Downsizing of engines:**
 → Increase of specific engine power output
 → Higher thermal loading
 → Optimized and very effective cooling system is needed

• **Shorter development cycles**
 → Less project time
 → Robust & accurate CAE process

→ **Target for CAE**
 → Predictive results are required.
 → Calculated structural temperatures within +/- 5 K from reality.
Thermal Analysis of IC Engines

CAE Procedure

- CFD Combustion Simulation
 - ES-ICE + STAR-CD
- CFD Coolant Flow Simulation with solid (CHT)
 - STAR-CCM+
- Averaging over working cycle
 - $\alpha_{\text{gas}}(x,t)$
 - $T_{\text{gas}}(x,t)$
 - $T_{\text{wall}}^*(x)$
- Some Iterations
 - $\alpha_{\text{gas}}^*(x)$
 - $T_{\text{gas}}^*(x)$
- 1D Gas Exchange Simulation
 - GT-Power
- Thermomechanical Analysis (FEM)
 - ABAQUS
- CFD Combustion Simulation
 - ES-ICE + STAR-CD

Symbols:
- m_{Fuel}
- λ
- $p_{\text{in}}(t)$
- $T_{\text{in}}(t)$
- $p_{\text{exh}}(t)$
- $T_{\text{exh}}(t)$
- n, P

Coolant

$d\dot{m}/dt_{\text{Coolant}}$
Thermal Analysis of IC Engines
Gas-side Heat Transfer

CFD Combustion Simulation
ES-ICE + STAR-CD

Averaging over working cycle

\[\alpha_{\text{gas}}(x,t) \]
\[T_{\text{gas}}(x,t) \]

Some Iterations

CFD Coolant Flow Simulation with solid (CHT)
STAR-CCM+

1D Gas Exchange Simulation
GT-Power

Thermomechanical Analysis (FEM)
ABAQUS

\[\frac{dm}{dt}_{\text{Coolant}} \]

\[T_{\text{wall}}^*(x) \]
Thermal Analysis of IC Engines
Gas-side Heat Transfer

Motivation
- Wall heat transfer has influence on thermodynamics, emissions, wall film, etc.
- Thermal loads are an important input for FEA

⇒ Realistic calculation of thermal loads on engine structure is essential

Simulation Approach
- CFD simulation of working cycle / gas-side heat transfer
- Cycle-averaging of heat transfer coefficients and local gas temperatures
- Mapping to CFD-CHT model

Result
- Detailed analysis of thermal loading
- Thermal boundary conditions for FEA
- Pre-calculation of structural temperatures
Thermal Analysis of IC Engines
Gas-side Heat Transfer

Sensitivity analysis of combustion system parameters (Diesel)

- Nozzle Bore Dia.
- Nozzle Depth
- Start of Injection
- Pre-Injection
- Init. Temperature
- Boost Pressure
- EGR Rate

→ Combustion system specification should be considered as good as possible
→ In real-life project work, these information are often not yet available
Thermal Analysis of IC Engines
Gas-side Heat Transfer

Sensitivity analysis of basic CFD model parameters

Turbulence model and wall function have the biggest impact
Selection of suitable submodels is required
Thermal Analysis of IC Engines
Gas-side Heat Transfer

Sensitivity analysis of turbulence modelling

<table>
<thead>
<tr>
<th>Turbulence model</th>
<th>ΔQ_w [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A</td>
<td>-100.0%</td>
</tr>
<tr>
<td>Model B</td>
<td>-50.0%</td>
</tr>
<tr>
<td>Model C</td>
<td>0.0%</td>
</tr>
<tr>
<td>Model D</td>
<td>50.0%</td>
</tr>
<tr>
<td>Model E</td>
<td>100.0%</td>
</tr>
<tr>
<td>Model F</td>
<td>-100.0%</td>
</tr>
<tr>
<td>Model G</td>
<td>-50.0%</td>
</tr>
<tr>
<td>Model H</td>
<td>0.0%</td>
</tr>
<tr>
<td>Model I</td>
<td>50.0%</td>
</tr>
<tr>
<td>Model J</td>
<td>100.0%</td>
</tr>
<tr>
<td>Model K</td>
<td>-100.0%</td>
</tr>
<tr>
<td>Model L</td>
<td>-50.0%</td>
</tr>
</tbody>
</table>

→ Selection of a suitable turbulence model is mandatory
Thermal Analysis of IC Engines
Gas-side Heat Transfer

Sensitivity analysis of wall function

Experiment (Woschni)
Standard Wall Function
Wall Function Model A
Wall Function Model B
Wall Function Model C

Selection of suitable wall function model is mandatory
Thermal Analysis of IC Engines
Gas-side Heat Transfer

Cycle-averaged heat input boundary condition from working-cycle CFD

Combustion chamber Exhaust ports Liner

→ 3d effects captured (e.g. non-symmetric heat flux distributions)
Thermal Analysis of IC Engines
Coolant-side Heat Transfer

CFD Combustion Simulation
ES-ICE + STAR-CD

CFD Coolant Flow Simulation with solid (CHT)
STAR-CCM+

Averaging over working cycle

α_{gas}(x,t)
T_{gas}(x,t)

Average over working cycle

α_{gas}^*(x)
T_{gas}^*(x)

1D Gas Exchange Simulation
GT-Power

n, P

Thermomechanical Analysis (FEM)
ABAQUS

Some Iterations

dm/dt_{Coolant}

© IAV · 03/2014 · MEn · DP-E24 · cd-adapco Global User Conference · Vienna · Where the heat goes?
Thermal Analysis of IC Engines
Conjugate Heat Transfer Model

Polyhedral calculation grid with conformal interfaces

→ Sufficient discretisation necessary (approx. 20 mil. cells for R4 engine model)
Thermal Analysis of IC Engines
Coolant-side Heat Transfer

Coolant properties

• **Chemical composition of cooling fluids affects**
 → Convective heat transfer behaviour as well as
 → More important, phase change behaviour / boiling heat transfer performance

• **Differences of surface temperatures up to 20 K are observed**

→ Detailed boiling behaviour of coolant fluid should be known
Boiling modelling

- **Available models**
 - **Single-phase Rohsenow model**
 - To be parameterised / calibrated
 - But:
 - No transition / film boiling effects captured
 - No boiling suppression at higher velocities captured
 - **Multi-phase transition boiling model**
 - To be parameterised / calibrated
 - But not intended on stationary calculations

- **Developed IAV approach**
 - Transition boiling model equations implemented via field functions in single-phase simulation
 - Boiling suppression considered
 - Calibrated with measurement data
Thermal Analysis of IC Engines
Coolant-side Heat Transfer

Effects of different Coolant Boiling Performances

Heat transfer performance vs. Cylinder-head temperatures

ΔT approx. 20K

→ Accurate description of coolant boiling behaviour is necessary
Thermal Analysis of IC Engines
Validation

Differences Simulation to Measurement

This represents a successful simulation, but not yet in target range of +/- 5K
Satisfying predictive simulations are still challenging
Thermal Analysis of IC Engines

Summary

→ Not only computational power is decisive but accurate submodelling of ALL physics.
Contact

Marcus Ende
IAV GmbH
Kauffahrtei 25, 09120 Chemnitz
Telefon +49 371 237-34386
marcus.ende@iav.de
www.iav.com