A Co-Simulation Approach to Modeling the Solenoid Valve Multiphysics

Presenter
Gregor Judex

Authors
Sharat Prasad
Krishna Gundu
Kaushik Das
Contents

1. Problem Description
2. Solution Workflow
3. EM Analysis
4. Fluid-Structure Interaction (FSI) Analysis
5. Results
6. Conclusions
Problem Description

Solenoid Valves

- Electromechanical (EM) valves that are used to control the flow of liquids and gasses
 - Complex mechanisms of operation requiring interaction between electromagnetic, fluid and structural domains
 - From a design perspective, the time required to open or shut off the valve is of significant interest
Problem Description

Solenoid Valve Multiphysics

- Coupled multiphysics simulation using Abaqus and STAR-CCM+
 - Accurate evaluation of electromagnetic and fluid dynamic forces
 - Understanding their interaction with the valve’s structural components
 - Leverage best-in-class solvers for respective physics

- Benefits
 - Computationally study the solenoid valve’s response times
 - Evaluate the effect of design variables
 - Material properties
 - Spring constants
 - Spring damping
 - Coil properties
 - Fluid properties
 - Geometry
Problem Description

Solenoid Valve Model

EM Analysis

FSI Analysis
Solution Workflow

Multiphysics Approach

Electromagnetic Analysis
- Obtain EM force as a function of electric current and plunger location
- A parametric study is performed to generate the data
- Python scripting and Isight facilitates the parametric study
- EM analysis in Abaqus/Standard

FSI Analysis
- Co-simulation between fluid and structural domains
- Co-simulation engine in Abaqus performs a conservative physics-based mapping between dissimilar fluid and structural meshes

CFD Analysis
- STAR-CCM+
- Viscous incompressible fluid dynamics
- Laminar/Turbulent flows
- Moving deforming mesh

Abaqus/Standard
- Sensor output on plunger displacement
- EM force applied through user subroutine UAMP
EM Analysis

Methodology

- Plunger and core
 - Soft magnetic materials with magnetic properties similar to that of an ASME 1010-grade steel
 - BH curve to account for the magnetic saturation at high field intensities

- Compute magnetostatic response of the valve in **Abaqus/Standard**
 - Magnetic vector potential-based formulation
 - Compute at a given current and plunger position
 - Current is assumed to be quasi-static
 - Ignore eddy currents arising from the motion of the plunger in the magnetic field

Nonlinear BH curve of the plunger and the core
EM Analysis

Methodology

▸ Obtain total force on the plunger
▸ Integrate Maxwell’s stress tensor over the surface of the plunger

Magnetic flux density at plunger displacements various plunger displacements (1 A current)

Force vs. plunger displacement

Increasing current
FSI Analysis

Structural Model

- **Abaqus/Standard**
 - EM force is applied as a CLOAD through user subroutine UAMP
 - Sensor history output of current plunger position is obtained
 - Force for a given current and position is calculated through linear interpolation

![Electric circuit time constant = 10 ms](image)

![Applied current vs. time in UAMP](image)
FSI Analysis

CFD Model

- **STAR-CCM+**
 - Transient incompressible flow analysis
 - Boundary condition
 - Inlet mass flow rate = 0.5 kg/s
 - *Laminar flow: Reynolds number ~ 169*
 - Outlet pressure is atmospheric
 - Mesh motion is constrained at inlet, outlet and walls
 - FSI coupling dictates the mesh motion and velocities at the plunger interface

Fluid: Viscous Oil
- Oil density = 998 kg/m3
- Viscosity = 0.15 Pa.s
FSI Analysis

CFD Model

- STAR-CCM+
 - Mesh:
 - Polyhedral mesh with prism layers
 - Total number of cells: 649646
 - Volumetric refinement near valve seat
 - Volumetric coarsening in inlet region and far outlet region
FSI Analysis

CFD Model

- STAR-CCM+
 - Solver settings
 - Segregated solver,
 - Transient SIMPLE algorithm
 - 100 inner iterations ensuring residuals reduce 3 orders of magnitude in each of the time step
 - Under-relaxation: Pressure – 0.2, Momentum – 0.8
 - Mesh morpher
 - Total physical time of simulation: 0.2 s

Total physical time of simulation: 0.2 s
FSI Analysis

Coupling between Abaqus/Standard and STAR-CCM+

- Coupling is driven through STAR-CCM+ GUI
 - Easy-to-use

- Coupling methodology
 - Carried out using the Abaqus Co-Simulation Engine (CSE)
 - Runs in background without user-intervention
 - Physics-based conservative mapping of solution quantities (such as forces and heat fluxes)
 - Does not require matching meshes between solid and fluid domains

- Explicit coupling
 - Implicit coupling for tightly coupled physics

- Rendezvous scheme between solvers employing either a min-min or constant coupling time strategy
 - Min-Min strategy: Minimum of the time increment sizes determined by the automatic time incrementation schemes of the individual analyses
 - Constant coupling time strategy: Exchange at constant coupling time
Results

- Coupled EM/FSI simulation demonstrated steady-state operating condition for the plunger after the electric current is activated.
 - The valve reaches a steady-state operating condition at $t = 60 \text{ ms}$ after the electric current is activated (the electric current circuit time constant is 10 ms).

Plunger displacement vs. time

Plunger steady-state configuration

Steady-state
Results

- Flow velocity in steady-state operating condition
Results

Pressure in the flow field

Flow streamlines (colored by pressure)

Initial and deformed mesh
Conclusions

- Methodology for simulating the coupled electromagnetic (EM) and fluid-structure interaction (FSI) analysis of a solenoid valve
- Study solenoid valve’s response times
- Design variations can be studied
 - Study effect of geometry, fluid properties, coil properties and material properties etc.
- Coupled or follow-up structural analysis can be performed
- Leverage EM and structural capabilities of Abaqus and CFD capabilities of STAR-CCM+
 - Seamless integration between Abaqus and STAR-CCM+
 - Superior STAR-CCM+ user interface
- Future work:
 - Valve closure modeling, that requires CFD volume mesh pinching capability, will be modeled with the over-set mesh technology in future version of STAR-CCM+
Questions?
THANK YOU