EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS

Brandon Marsell
a.i. solutions, Launch Services Program, Kennedy Space Center, FL
Agenda

- Introduction
- Problem
- Background
- Experiment
- STAR-CCM+ CFD model
- Results
- Conclusion
Introduction

• Launch Services Program
 – Provide leadership, expertise and cost effective services in the commercial arena to satisfy agency wide (NASA) space transportation requirements and maximize the opportunity for mission success
 – Interface between launch service provider (commercial) and NASA spacecraft
 – Requires engineering success

• Mission Analysis Division
 – Verify and validate mission engineering/analysis
 – Conduct any analysis required by NASA’s unique missions
 – Reduce technical risk to NASA missions
Problem

• Fuel Slosh
 – Liquid propellants account for most of the mass on a launch vehicle
 – During flight, these liquids “slosh” back and forth within the tanks
 – This sloshing motion causes forces on the vehicle which must be accounted for in the flight software
 – Both frequency and damping rate for all liquid propellant tanks must be accurately predicted in order to create an efficient autopilot design
 – The idea is to keep the rocket flying straight!
 » This will lead to engineering success

• Typical propellant tanks on NASA missions
 – 2 on booster stage
 – 2 on upper stage
 – 1-16 tanks on payload
• Guidance Navigation and Controls (GN&C) analyses use simplified mechanical analog models
 – Spring mass system
 – Pendulum system
• These simplified models require parameters as inputs
 – Pendulum mass
 – Fixed mass
 – Pendulum length
 – Hinge point
 – Fixed mass location
• These parameters vary as a function of fill level
Background

• How to derive these parameters
 – Experimental data
 » Expensive
 » Time consuming
 » Lots of data reduction necessary
 – CFD
 » Quick
 » Inexpensive
 » Simple
 – Analytical Methods
 » Very easy to apply
 » Only valid with simple geometry
• CFD must first be validated
 – Producing engineering success
Experiment

- Carried out at Embry-Riddle Aeronautical University
- Simplified case
 - 8 inch diameter sphere
 - Water
 - 60% fill level
 - Linear excitation
 - Step impulse and hold
 - No breaking waves
• Same geometry was modeled using STAR-CCM+
 – Volume of Fluid (VOF)
 » Phase 1 = water
 » Phase 2 = air
 – Implicit unsteady
 » 2nd order Time
 » Timestep 0.0025 s
 » Total time 20 s
 – Gravity
 » 1g
 – Constant density (incompressible)
 » 997.561 kg/m3 – water
 » 1.18415 kg/m3 - air
 – Three dimensional
STAR-CCM+ Model

• **Mesh**
 – Used simple (new shape part) sphere
 – Surface remesher
 – **Trimmer Mesh**
 » Works well with VOF formulation
 » Need high resolution throughout domain
 – Prism layer mesher for accurate viscous damping
 – 3.1 M cells

• **Boundary Condition**
 – 1 region
 » Walls
 » No-slip
STAR-CCM+ Model

• Stopping Criteria
 – Maximum inner iterations = 10
 » Reduced residual by at least 2 orders of magnitude
 – Maximum physical time = 20 s
 – Maximum steps disabled

• Reports/monitors/plots
 – Fluid forces on tank walls
 » Pressure and viscous
 » X, Y, Z direction
 » Plot every time step

• Initial condition
 – Fluid velocity = 0.065 m/s
Results

STAR-CCM+ Results Comparison
Results Frequency

FFT Experiment Force X

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.148</td>
</tr>
<tr>
<td>3.784</td>
</tr>
</tbody>
</table>

FFT CFD Force X

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.026</td>
</tr>
<tr>
<td>3.589</td>
</tr>
</tbody>
</table>
Results Frequency

- Difference roughly 5%
- Very sensitive to fill level
 - Experiment was filled using fluid volume
 - CFD initialized using fill level converted from volume
 - Frequency content in “stinger”?
• **Logarithmic decrement Δ**
 – \(\Delta = \ln(\text{peak oscillation} / \text{peak one cycle later}) \)

• **Damping ratio \(\gamma \)**
 – \(\gamma = \frac{\Delta}{2\pi} \)
 – 2.9% difference
 – Very difficult to calculate properly

<table>
<thead>
<tr>
<th>Damping Ratio</th>
<th>Experiment</th>
<th>0.004002</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR-CCM+</td>
<td>0.003887</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• STAR-CCM+ validated for low amplitude, simple geometry slosh modeling
• Both frequency and damping rate match fairly well
 – Frequency off a bit more than desired but that could be caused by inaccurate fill procedures during experimental testing
 – Further research will be carried out to investigate the causes
• Increases LSP confidence in this method for slosh calculations
• Will add to LSP’s engineering success!