Manufacturing Simulation for the Casting Industry with STAR-Cast
Agenda

- Manufacturing Simulation
- Casting
- STAR-Cast
 - Application coverage
- Outlook
Simulation for Manufacturing

- Simulation widely used for
 - Research
 - Product Design
 - Verification
 - Thermal
 - Efficiency
 - Safety

- Increased interest in manufacturing processes
 - Process simulation
 - Tool Design
Manufacturing of Castings

Aspects of Casting Manufacturing

Materials
- Non Ferrous alloys
 - Aluminum
 - Nickel
 - Titanium
 - …
- Ferrous alloys
 - Steel
 - Ductile/Grey Iron
 - …

Casting Processes
- Die Casting
 - Tilt
 - Low/High Pressure-Casting
 - Gravity
- Precision Casting
 - Centrifugal
 - Bridgeman
 - Continuous Casting
 - Sand Casting

Manufacturing:
- Casting
- Filling and Solidification
- Defect distribution
- Structural integrity
- Accuracy
- Tools
 - Cooling
 - Design
 - Longevity

Overall goal: Increase the quality of the casting and minimize production costs
Casting Simulations

Objectives

- Where Casting Simulation aids manufacturing
- Sensitivity analyses for process parameters
- Geometrical parameter studies
- Defect Elimination
- Objectives where Casting Simulation aids manufacturing
- Enhancement and conservation of raw materials
- Reduce number of trial runs

Defect Elimination

- Geometrical parameter studies
- Enhancement and conservation of raw materials
- Reduce number of trial runs
- Sensitivity analyses for process parameters
- Objectives where Casting Simulation aids manufacturing

Enhancement and conservation of raw materials

- Geometrical parameter studies
- Defect Elimination
- Objectives where Casting Simulation aids manufacturing
- Sensitivity analyses for process parameters
- Reduce number of trial runs
Strategic Partnership

• Best of both worlds
 – Provide state of the art of casting simulation solution by combining the engineering experience of two companies which have a long-standing track record in providing CAE solutions and casting processes for over 25 years
 – Established casting solution STAR-Cast
STAR - Cast

- Dedicated tool for Casting Simulations
- Key Features:
 - Multiphase Filling & Solidification
 - Criteria Functions for Defect Prediction
 - Material Database
 - Shell mold generation

Processes

- Permanent Mold
 - Tilt—Casting
 - Die Casting
 - Low/High Pressure
 - Gravity
- Lost Mold
 - Sand Casting
 - Precision Casting
 - Bridgeman
 - Gravity
 - Centrifugal
• Latest release (with STAR-CCM+ v8.02) as an Add-on to STAR-CCM+

• From CAD to Post Processing in one GUI

• Add all the benefits of having STAR-CCM+ in the background
 – Expand STAR-Cast’s application coverage
 – State of the art Meshing and Solver technology
 • Parts Based Meshing
 – Leverage STAR-CCM+’s streamlined workflow

• New Release of STAR-Cast every 4 months
STAR- Cast: Multi Phase Simulation

• Fully Transient Simulation
• Simultaneous solving for flow and energy:
 • Multiphase: Volume of Fluid (VOF)
 • Resolution of the molten flow and filling front
 • Model phase change
 • Conjugate Heat Transfer
 • Convection, Conduction, Radiation
 • Across multiple fluids and solids
A dedicated Material Database is available in STAR-Cast, pooling all relevant material information for the casting engineer.

- Material comparison
- Temperature depended
- Recommended datasets
- Fully documented
- Import or change datasets
- Explicit usage rights
Enthalpy Melting Solidification Model
- Enthalpy formulation to track solid portion of the metal phase

Mushy / Slurry Zone for metal alloys
- Large solidification intervals
- Growing net of dendrites impede flow

Flow Stop Model
- Complete stop of flow in solidified areas
STAR-Cast: Defect Prediction

- Aim is to provide additional information on the quality and structure of the casting
 - Shrinkage
 - Macro/ Micro Porosities
 - Primary/Secondary Dendrite Arm Spacing

- Available Models
 - Criteria Functions
 - Macro Porosity Model

Criteria Functions
- Liquid Residence Time
- Isotherm Speed
- Mean Cooling Rate
- Solidification Velocity
- G/v Criterion
- Niyama Criterion
- Primary Dendrite Arm Spacing
- Secondary Dendrite Arm Spacing

Ref: Access, STAR-Cast
Casting Processes

Die Casting
• Low/High Pressure Die Casting
• Tilt Die Casting
• Gravity Die Casting

Sand Casting

Investment Casting
• Gravity Casting
• Centrifugal Casting
• Bridgeman Process

Other Processes
• Continuous Casting
• Composite Casting
• Pouring Simulation

STAR-Cast application range
Die Casting – Tilt Casting

- Tilting of the entire system
 - Die, Cast Part, Cores, ...
 - Tilting curve applied via Rigid Body Motion
 - Track air bubbles

90 deg turn in 10 s
Die Casting - LPDC

- Time depended pressure profile pushes the melt into the die
- Improper process parameters like pressure profile or die temperature leads to porosities

Several casting cycles necessary to achieve steady state temperature profile
Sand Casting

- Large and complex castings
- Porous mold
 - Porosity is crucial for the mold filling
- Incorporate feeder, cooling irons, filters
- Mold filling important for the overall quality of the casting
 - Accurately capture the pouring of the melt
Challenges in Investment Casting

- Thin-walled components with designs at the limit of producibility
- New materials
- Shell molds/ wrappings

- Shell Mold Generator

Automatic shell mold generation

Courtesy of Access
Investment Casting

- **Lost mold process**
 - Investment mold is porous
 - Back pressure influences filling

- **Bridgeman process**
 - Estimate proper heater location and power
 - Part removal via Rigid Body Motion

- **Gravity**

- **Centrifugal**
 - Rotating crucible
 - Stationary crucible
STAR-Cast and beyond

- Bringing STAR-Cast and STAR-CCM+ closer together leads to synergy effects

- Extended application coverage
 - Optimization with OPTIMATE
 - Detailed Die Cooling analysis
 - Pouring Optimization
STAR-Cast and OPTIMATE

- Leverage STAR-Cast’s capability with OPTIMATE for design optimization
- Example
 - Design exploration with STAR-Cast and OPTIMATE/Sherpa
 - Find sensitivities between Shape/ Die temperatures and feeding capabilities
 - Solidification time (max)
 - Solidification front (minimum area)
Pouring Optimization with STAR-Cast

- Pouring optimization
 - Reduce misruns
 - Increase yield
 - Skull reduction
 - Use STAR-Cast (VOF + Overset mesh) to find optimized pouring curve
 - Variation in rotational speed, pouring height and position
Outlook

• The new Casting User Interface in v8.04
 – To be used as a stand alone or parallel to the simulation tree

• Benefits
 – High degree of automation
 – Short learning curve
 – Driven by the casting process
 • Add additional physics as required
THANK YOU!!

• We invite to visit our best practice session on Wednesday from 10:30 to 12:30 in the Royal Palm Ballroom 2

• Live Demo’s to highlight key features of casting simulations with STAR-Cast
• Sneak a peek at the new Casting User Interface