Let's Gain More Confidence Of Clinicians With Our Colorful Contours: Blood Flow Simulation In Arteries Using Abaqus & STAR-CCM+

Damon Afkari
Felipe Gabaldón
Javier Rodríguez

PRINCIPIA Ingenieros Consultores S. A., Madrid, Spain
Polytechic University of Madrid, Spain
Clinicians and engineers

How to attract the attention of clinicians to our colorful contours?
Clinicians and engineers

- Time-consuming numerical methods are not interesting for surgeons
PRINCIPIA

- Mechanical and structural problems, particularly those with a dynamic and/or non-linear character: impacts, earthquakes, explosions, vibrations, large deformations, etc.
- The Spanish agent for SIMULIA (from 1988), distributes and supports SIMULIA products, being the program Abaqus among them
- + 30 years of experience
- Experiences in different sectors:
 - Aerospace
 - Automotive
 - Life sciences
 - Civil
 - Defense
 - Naval
 - Nuclear
 - Petroleum
SIMULIA

Dassault Systèmes Brand for Making Realistic Simulation an Integral Business Practice to Explore, Discover, Understand, and Improve Product, Nature, and Life
Idealization

Votta, Herrero, Suo, Bailevs, Kim, Qiao & Liu, Moirean, Huang and Brawn
Cardiovascular Auto-regulation

- Glossopharyngeal Nerve (Cranial Nerve IX)
- Sinus Nerve
- R. Internal Carotid
- L. Internal Carotid
- R. External Carotid
- L. External Carotid
- Carotid Sinus Receptors
- Ascending Aorta
- Aortic Arch Receptors
- Vagus Nerve (Cranial Nerve X)

Graphs showing:
- Resistance (PRU_100)
- Flow (ml/min/100g)
- Pressure (mmHg)

Legend:
- Passive
- Autoregulation
Cardiovascular Auto-regulation

Inlet flow (heart)

Outlet

P1

10%

P2

5%

P3

5%
A+IPBC method
A+IPBC method

- Implicit or Explicit FSI

Implicit or Explicit FSI
Aortic dissection

<table>
<thead>
<tr>
<th></th>
<th>Iter.1</th>
<th>Iter.2</th>
<th>Iter.3</th>
<th>Iter.4</th>
<th>Iter.5 (1st cycle)</th>
<th>Iter.5 (2nd cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta P_1 (Pa)$</td>
<td>0.0</td>
<td>-150.0</td>
<td>-37.16</td>
<td>-31.40</td>
<td>-30.37</td>
<td>-30.37</td>
</tr>
<tr>
<td>$\Delta P_2 (Pa)$</td>
<td>0.0</td>
<td>-10.0</td>
<td>-7.25</td>
<td>-18.95</td>
<td>-1.13</td>
<td>-1.13</td>
</tr>
<tr>
<td>$\Delta P_3 (Pa)$</td>
<td>0.0</td>
<td>-10.0</td>
<td>-6.93</td>
<td>-15.12</td>
<td>-0.66</td>
<td>-0.66</td>
</tr>
<tr>
<td>Q_1 (%)</td>
<td>4.79</td>
<td>25.82</td>
<td>12.03</td>
<td>10.47</td>
<td>11.14</td>
<td>11.99</td>
</tr>
<tr>
<td>Q_2 (%)</td>
<td>5.37</td>
<td>4.86</td>
<td>5.84</td>
<td>7.75</td>
<td>5.25</td>
<td>5.35</td>
</tr>
<tr>
<td>Q_3 (%)</td>
<td>5.34</td>
<td>4.85</td>
<td>5.70</td>
<td>7.45</td>
<td>4.67</td>
<td>4.80</td>
</tr>
<tr>
<td>Q_4 (%)</td>
<td>84.50</td>
<td>64.47</td>
<td>76.43</td>
<td>74.33</td>
<td>78.94</td>
<td>77.86</td>
</tr>
</tbody>
</table>
Aortic dissection

A Patent False Lumen without Thrombus
B False Lumen with Partial Thrombosis
C False Lumen with Complete Thrombosis

BP, 140/70 mm Hg
BP, 140/70 mm Hg
BP, 140/70 mm Hg

140
120
BP, 140/80 mm Hg, MAP, 100 mm Hg
BP, 120/100 mm Hg, MAP, 107 mm Hg
BP, 10/10 mm Hg, MAP, 10 mm Hg

200 mm Hg
200 mm Hg
200 mm Hg

0 mm Hg
0 mm Hg
0 mm Hg

TSAI
Aortic dissection

- Collaborating with Hospital Puerta de Hierro, Madrid
Aortic dissection
Aortic dissection

- Collaborating with
 Hospital Puerta de Hierro, Madrid
Aortic dissection

- Collaborating with
 Hospital Puerta de Hierro, Madrid
Aortic dissection

Collaborating with
Hospital Puerta de Hierro, Madrid
Patient-specific model
Patient-specific model
Patient-specific model
Patient-specific model
Conclusions

- Faster numerical simulations
- Reliable results
- Collaboration with hospitals
- New projects collaborating with biomedical industries
Thanks!

Damon Afkari
Felipe Gabaldón
Javier Rodríguez

PRINCIPIA Ingenieros Consultores S. A., Madrid, Spain
Polytechnic University of Madrid, Spain