Computational Modelling of Lymphatic Valve Mechanics

STAR Global Conference

John T Wilson1, Wei Wang2, David C Zawieja2, James E Moore Jr1

1 Imperial College London
Department of Bioengineering
London, UK

2 Texas A&M Health Science Center
Department of Medical Physiology
Temple, TX, U.S.A.
The Lymphatic System

• Responsible for fluid balance and homeostasis

• Important in immune cell transport (cancer metastasis)

• Lymphoedema – debilitating disease with no known cure
Role of Nitric Oxide (NO)

- Diastolic relaxation sensitive to endothelium derived NO
- Shear forces produced by flow activate eNOS and NO is produced by EC’s
- *Convection of NO will influence vascular tone*

Fluid pumped against favourable pressure gradient
 - *intrinsic* pumping

High NO concentration found [HERE](image from Texas A&M Health Science Center)

Adapted from Bohlen et al 2009

![Fluorescent Staining](image from Texas A&M Health Science Center)
Project Goals

More complete characterisation of the lymphatic valve is necessary.

1) Develop computational models to describe detailed flow profiles near the lymphatic valve structure.

2) Determine NO concentrations produced along the lymphatic valve and relate to properties of flow.
In-vivo Geometry Model

Confocal Imaging
- isolated rat mesenteric lymphatic vessel
- focus on valve
- 2D images along z-direction
- 2.5 µm apart

Image Reconstruction
- Scan IP/FE (Simpleware, Exeter, UK)
- Smoothing and filtering
- Reconstruct fluid region

Meshing
- Star-CCM+
- Trimmer (predominantly hexahedral)
- Prism layer
- ~400,000 elements
- mesh independence to resolve WSS less than 6% RMS difference

Wilson J. et al 2013

Image from Texas A&M Health Science Center
In-vivo Geometry Model

Boundary Conditions
- Velocity Inlet (0.5-7 mm/s)
- Zero-pressure outlet
- Shear-dependent NO flux at vessel wall
- Constant inlet concentration with zero flux at outlet
- Analogy to heat transfer
- Sink term for NO
- Re<1

\[
R_{NO} = \frac{R_{NO,max}}{1 + y \exp(-W_o \cdot WSS_{axial})}
\]

Wilson J. et al 2013
In-vivo Geometry Model

NO Production

- Higher production in elevated areas of axial WSS

NO Concentration

- Higher in areas of flow stagnation (despite very low production in these areas)

Wilson J. et al. 2013
Future Work

• Fully dynamic model (both idealised and image-based)

• Compare to results of previous static model and determine influence of valve motion on distributions of NO concentration.
Acknowledgements

Supervisor: Professor James Moore, Jr

Current and Former Lab Members
- Dr Danika Hayman
- Dr Will Richardson
- Dr Elaheh Rahbar
- Mr Mohammad Jafarnejad
- Ms Samira Jamalian
- Mr Gus Hellerstedt
- Ms Christine Otieno
- Ms Chiara Scabellone

Texas A&M Health Science Center
- Dr David C. Zawieja
- Dr Olga Gasheva
- Dr Wei Wang
- Dr Zhanna Nepiyushchikh
- Ms Anna Webb

Swansea University
- Dr Raoul van Loon

Funding:
- Imperial College Bioengineering Departmental Studentship
- NIH Grant: R01 HL094269
- NIH Grant: R01 HL070308
- Royal Academy of Engineering
- Royal Society
- Bagrit and Lohman Chairs (Moore)
References

