Improving layer control in multi-layered polyester films using Computational Fluid Dynamics (CFD)

James Championa, b, Kieran Looneya, Mark Simmonsb

a. DuPont Teijin Films U.K. Limited, The Wilton Centre, Redcar, TS10 4RF, U.K.
b. School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, U.K.

STAR Global Conference, Orlando

18th – 20th March 2013
Agenda

• What is a multi-layered film (MLF)?
• Typical DuPont Teijin Films (DTF) coextrusion structures.
• CFD modelling of typical DTF coextrusion structures:
 – An injector block linked to an end fed die;
 – A multi-manifold die (MMD).
• Comparative summary.
What is a multi-layered film (MLF)?

- A film consisting of several different polymer layers.
- Have applications in photovoltaic cells, cards and as reflector film.
- Contrasting polymer melt layers form a single structure in either an injector block linked to a die or a multi-manifold die (MMD).
- Typical MLF structures:
Common DTF coextrusion structures

• Injector block and end fed die:
 - Unified melt structure
 - Tapered outlet – for flow uniformity.

• Multi-manifold die (MMD):
 - Unified melt structure
CFD modelling of an injector block and end fed die

Injector block: 1.5 million mesh cells

Trimmer mesh used with hexahedral template cells.
Base cell size = 2.0 mm.
Minimum cell size = 0.125 mm.

End fed die: 14.5 million mesh cells
Modelled fluid properties (ABA final film)

<table>
<thead>
<tr>
<th>Melt 1</th>
<th>Melt 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature = 285 °C</td>
<td>Temperature = 285 °C</td>
</tr>
<tr>
<td>Density = 1,250 kg m(^{-3})</td>
<td>Density = 1,250 kg m(^{-3})</td>
</tr>
<tr>
<td>Melt viscosity = 170 Pa s</td>
<td>Melt viscosity = 170 Pa s</td>
</tr>
<tr>
<td>Thermal conductivity = 0.2 W m(^{-1}) K(^{-1})</td>
<td>Thermal conductivity = 0.2 W m(^{-1}) K(^{-1})</td>
</tr>
<tr>
<td>Mass flow rate = 80 kg hr(^{-1})</td>
<td>Mass flow rate = 20 kg hr(^{-1})</td>
</tr>
<tr>
<td>Final volume fraction = 80%</td>
<td>Final volume fraction = 20%</td>
</tr>
</tbody>
</table>

- Fluids initially taken as identical, then viscosity (Melt 2) increased.
- Modelling assumptions: laminar, Newtonian, incompressible flow.
Physics used

- **Code used**: STAR-CCM+ 7.06.009.
- **Computer used**: Dell Precision T7500 Westmere (32 GB memory).

- Eulerian Multiphase;
- Implicit Unsteady (typical time-step = 1.0 s with 20 inner iterations);
- Volume of Fluid (VOF\[^1\]);
- Laminar (Re << 1 - for a 25 mm diameter pipe, Re = 0.0085);
- Cell Quality Remediation.

Progressive volume fraction – injector block
Volume fraction – end fed die

Outlet volume fraction:
(Blank end, air side clear edge width = 7.2 mm)
Total shear rate through the die

At shear rates shown, polyester melts are Newtonian.

User defined field function:

$$\dot{\gamma} = \frac{\partial u}{\partial y}$$

- User defined field function:

$$\text{abs}((\text{abs}((\text{abs}{$$gradvelocityi[1]+$$gradvelocityj[0]})+\text{abs}((\text{abs}{$$gradvelocityj[2]+$$gradvelocityk[1]})+\text{abs}((\text{abs}{$$gradvelocityk[0]+$$gradvelocityi[2]})}))$$
Flow across the outlet

- Small flow difference shows the effectiveness of the wide taper.
Flow across the outlet for increasing viscosity ratios

![Graph showing flow across the outlet for different viscosity ratios. The x-axis represents die width (mm) ranging from 1 to 409, and the y-axis represents flow (m² s⁻¹) ranging from 0.0E+00 to 1.8E-04. Three lines represent different viscosity ratios: 1:5, 1:2, and 1:1.](image-url)
Injector block and end fed die summary table

<table>
<thead>
<tr>
<th>Viscosity (Melt 1:Melt 2, Pa s)</th>
<th>Blank end, air side clear edge width (mm)</th>
<th>Flow difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170:170</td>
<td>7.2</td>
<td>0.73</td>
</tr>
<tr>
<td>170:340</td>
<td>7.2</td>
<td>4.14</td>
</tr>
<tr>
<td>170:850</td>
<td>9.8</td>
<td>9.56</td>
</tr>
</tbody>
</table>

- Flow difference *increases* with increasing secondary layer viscosity.
- Clear edge width *increases* with increasing secondary layer viscosity.
CFD modelling of a multi-manifold die (MMD)

Trimmer mesh used with hexahedral template cells.
Base cell size = 1.0 mm.
Minimum cell size = 0.2 mm.

MMD: 12 million mesh cells
Progressive volume fraction - MMD

Velocity vector upon combination of different fluids:

- Fluid properties used as shown for injector block and end fed die modelling.
Outlet volume fraction

Volume Fraction of Melt 1

0.00000 0.20000 0.40000 0.60000 0.80000 1.00000
Flow across the outlet

Flow difference between circled regions = 5.04%

- Small taper gives a larger flow difference than with the end fed die.
Flow across the outlet for increasing viscosity ratios
MMD summary table

<table>
<thead>
<tr>
<th>Viscosity (Melt 1:Melt 2, Pa s)</th>
<th>Clear edge width (mm)</th>
<th>Flow difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170:170</td>
<td>11.0</td>
<td>5.04</td>
</tr>
<tr>
<td>170:340</td>
<td>10.9</td>
<td>3.11</td>
</tr>
<tr>
<td>170:510</td>
<td>10.7</td>
<td>2.66</td>
</tr>
<tr>
<td>170:850</td>
<td>10.1</td>
<td>2.18</td>
</tr>
<tr>
<td>170:1,700</td>
<td>9.7</td>
<td>2.00</td>
</tr>
</tbody>
</table>

- Clear edge width *decreases* with increasing secondary layer viscosity.
- Flow difference *decreases* with increasing secondary layer viscosity.
Comparative summary

- **Numerical comparisons:**
 - MMD requires 4 million mesh cells less than the other system.
 - End fed die residuals: 10^{-10} to 10^{-21}. Converged at 6,000 iterations.
 - MMD residuals: 10^{-6} to 10^{-15}. Converged at 2,500 iterations.

- **Comparisons between modelling results:**
 - Interface is more uniform and clear edges obtained with an MMD.
 - For wider viscosity ratios, the MMD has the more uniform flow.
 - The end fed die has a wider clear edge with a more viscous secondary layer (as expected). This is not found with the MMD.

- **Planned future work:**
 - Extending to wider, industrial scale geometries.
 - The study of very thin secondary layers.
 - Experimental validation.
Acknowledgements

- Dr. Kieran Looney (Industrial supervisor), DuPont Teijin Films.

- Prof. Mark Simmons (Academic supervisor), University of Birmingham.

- Dr. Richard Greenwood (Course manager), University of Birmingham.

- The Engineering and Physical Sciences Research Council (EPSRC).

- All the support staff at CD-adapco’s London office, especially Michael Descamps (Designated Support Engineer).

Any questions?
Flow across reduced MMD outlet

Flow (m²/s)

Die width (mm)
Flow with increasing primary layer viscosities