When you ask anyone to name a famous ship, the answer is usually “the Titanic.” Sure, there are other contenders depending on what part of the world you come from, but none left their mark on the wider public’s consciousness - or indeed continues to hold it - some 105 years since she sunk this coming April 15. In conversation with some colleagues the question was posed “I wonder if anyone’s ever really looked into simulating the Titanic?” There are computer animations, but this is not simulation. From a brief scan of the internet it seemed that this perhaps wasn’t the case. There are quite a few attempts at hand calcs to work out the physics involved, and plenty of debate about the precise nature of what happened with the propeller cavitation or the rudder being too small. But with the current set of computational tools available to engineers these days, specifically computational fluid dynamics (CFD), I thought it would be interesting to look back on the most famous ship of all time in STAR-CCM+ and what I learned was not exactly what I was expecting, but more on that later.

There are few people that are busier travelling during the month of December than one Mr. S. Claus himself. When traveling such long distances it’s hard to survive on mince pies (or cookies), a glass of milk (or brandy) and a few carrots for the reindeer alone. So any chance of cutting down the time taken to deliver presents would no doubt be a welcome one. As Santa delivered his fair share of presents to me, I figured I’d give something back and help him out with something that has bothered me for a long time; the aerodynamics of his sleigh.

As the dust settles on the Tour de France, and before it is stirred up again in Rio for the 2016 Olympic games, cycling sure is in the news of late. Unlike most sports in the summer Olympics, cycling is probably only one of two sports (the other being sailing) where aerodynamic performance directly impacts the athlete. So much so that at 50km/h 90% of the energy loss is related to aerodynamic drag.

Given how much time is spent flying around in any given planet’s atmosphere – could the Millennium Falcon, arguably the most iconic spaceship of all time, actually fly? I felt it would be fun to try and find out.
This IS the CFD simulation you've been looking for....

Subscribe to RSS - Chris Beves's blog
Matthew Godo
STAR-CCM+ Product Manager
Stephen Ferguson
Marketing Director
James Clement
STAR-CCM+ Product Manager
Joel Davison
Lead Product Manager, STAR-CCM+
Dr Mesh
Meshing Guru
Ravindra Aglave
Director - Chemical Processing
Karin Frojd
Sabine Goodwin
Director, Product Marketing